Orthogonal Determinants

Tobias Braun

Abstract. Basic concepts and notions of orthogonal representations are introduced. If $\mathfrak{X} : G \to \operatorname{GL}(V)$ is a K-representation of a finite group G it may happen that its image $\mathfrak{X}(G)$ fixes a non-degenerate quadratic form q on V. In this case \mathfrak{X} and its character $\chi : G \to K, g \mapsto \operatorname{trace}(\mathfrak{X}(g))$ are called orthogonal. If χ is an irreducible orthogonal character of even degree this form is unique up to scalars and there is a unique square class \det_{χ} in the character field $\mathbb{Q}(\chi) = \mathbb{Q}(\chi(g) \mid g \in G)$ such that given any field L with a representation that affords χ , the determinant of the fixed form q is $\det(q) = \det_{\chi}(L^{\times})^2$. In this talk we will discuss computational methods for determining this square class which is called the orthogonal determinant of χ . We will also briefly mention theoretical tools for determining this square class.